Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomass content governs fermentation rate in nitrogen-deficient wine musts.

Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeast's metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermenta...

متن کامل

Chapter 6 Wine Fermentation

The molecular biology revolution has brought forth significant new advances with application in microbiological analysis during wine production and storage. For example, traditional methods for microbial strain identification have been mostly supplanted in favor of ribosomal RNA-based methods for speciation of cultured yeast and bacterial populations in wine. Moreover culture-independent molecu...

متن کامل

Biological Demalication and Deacetification of Musts and Wines: Can Wine Yeasts Make the Wine Taste Better?

Grape musts sometimes reveal excess acidity. An excessive amount of organic acids negatively affect wine yeasts and yeast fermentation, and the obtained wines are characterized by an inappropriate balance between sweetness, acidity or sourness, and flavor/aroma components. An appropriate acidity, pleasant to the palate is more difficult to achieve in wines that have high acidity due to an exces...

متن کامل

The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.

AIM The aim of this study was to analyse the relevance of the general amino acid permease gene (GAP1) of the wine yeast Saccharomyces cerevisiae on nitrogen metabolism and fermentation performance. METHODS AND RESULTS We constructed a gap1 mutant in a wine strain. We compared fermentation rate, biomass production and nitrogen consumption between the gap1 mutant and its parental strain during ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Environmental Microbiology

سال: 2004

ISSN: 0099-2240,1098-5336

DOI: 10.1128/aem.70.6.3392-3400.2004